



Dr. Mohamed Ahmed Ebrahim





#### Ameeria Integrated Technology Education Cluster



#### Undergraduate Course



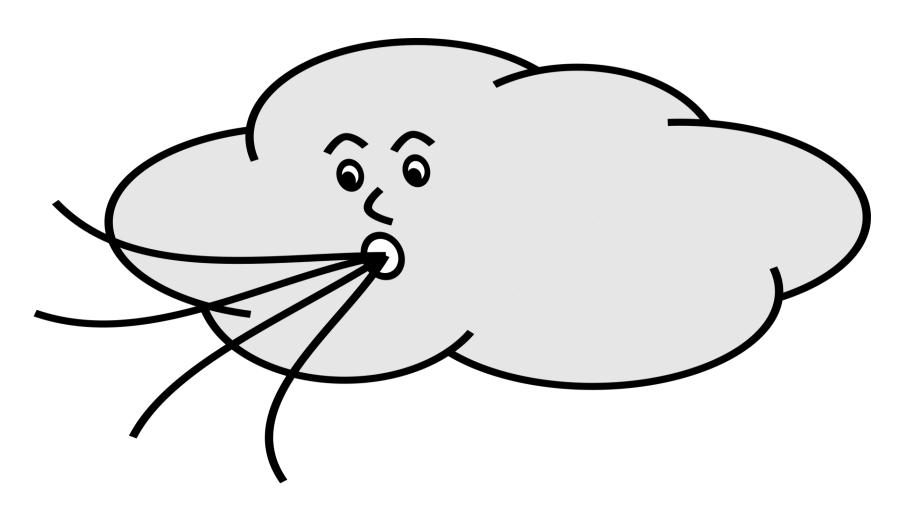
## Renewable Energy Systems

## Dr. Mohamed Ahmed Ebrahim

E-mail: mohamed.mohamed@feng.bu.edu.eg

Web site: http://bu.edu.eg/staff/mohamedmohamed033




Dr. Mohamed Ahmed Ebrahim



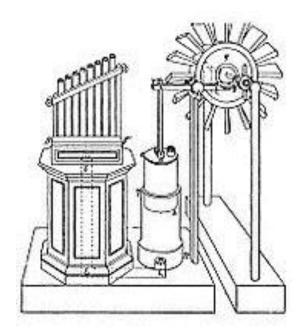


# Lecture (4)

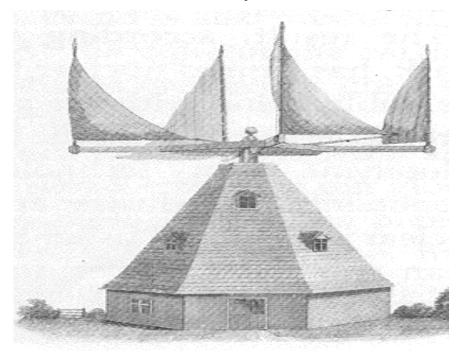
#### Wind energy?



Dr. Mohamed Ahmed Ebrahim


## When was it used?

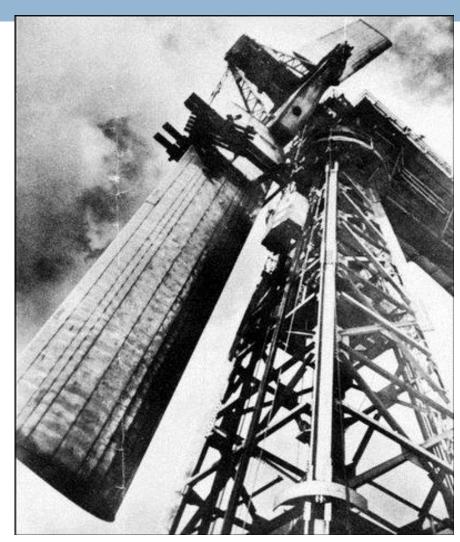
#### Historical overview


- □ Wind has been used by people for over 3000 years for grinding grain and pumping water
- Windmills were an important part of life for many communities beginning around 1200 BC.
- Wind was first used for electricity generation in the late 19<sup>th</sup> century.

## Wind Energy History and Trends

- □ The wind wheel of the Greek engineer Heron of Alexandria in the first century is the earliest known instance of using a wind-driven wheel to power a machine.
- Another early example of a wind-driven wheel was the prayer wheel, which has been used in Tibet and China since the fourth century.




Heron's wind wheel



Dr. Mohamed Ahmed Ebrahim

## Grandpa's Knob

- Smith Putnam Machine
- 1941
- Rutland, Vermont
- □ 1.25 MW
- 53 meters (largest turbine for 40 years)
- Structural steel
- Lost blade in 1945



Dr. Mohamed Ahmed Ebrahim

#### What is the Wind energy?

- Wind is the movement of air from an area of high pressure to an area of low pressure.
- The energy of wind is harnessed with wind turbine, they are usually grouped in the wind farms.
- Constant, such as offshore and high altitude sites, are preferred locations of wind farm.

 Wind energy is believed to be five times total current global energy production.



#### Continue

There are three types of wind farms:

- Onshore farms (often near water).
- Nearshore farms (on land or on sea within several km of a coast).
- 3. Offshore farms (parks ten km or more from land).

#### **Advantages of Wind Energy**

- Wind energy is a clean fuel source, and doesn't pollute the air like power plants.
- 2. It is a domestic source of energy.
- 3. The wind is free and with modern technology it can be captured efficiently.
- 4. Once the wind turbine is built the energy it produces does not cause green house gases or other pollutants.
- 5. Although wind turbines can be very tall each takes up only a small plot of land. This means that the land below can still be used.

#### Continue

- 6. Remote areas that are not connected to the electricity power grid can use wind turbines to produce their own supply.
- 7. Wind turbines are available in a range of sizes which means a vast range of people and businesses can use them.

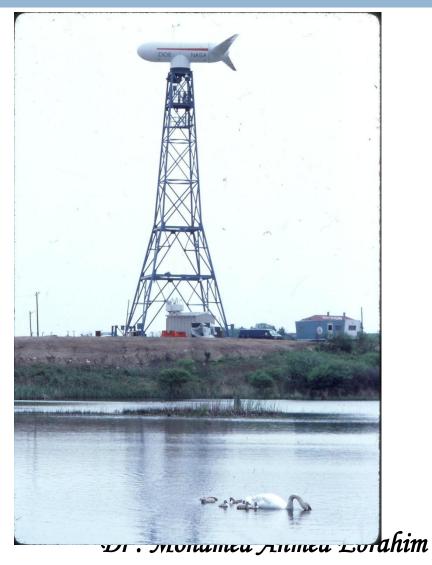
#### Disadvantages of Wind Energy

- Installation is expensive.
- 2. Threat to wildlife.
- 3. Noise pollution.
- 4. Visual pollution.

#### Wind Energy Application

- Wind turbines can be used as stand-alone applications, or they can be connected to a utility power grid or combined with a photovoltaic (solar cell) system.
- Several electricity providers today use wind plants to supply power to their customers.
- 3. Stand-alone wind turbines are typically used for water pumping or communications.
- 4. Small wind systems also have potential as distributed energy resources.

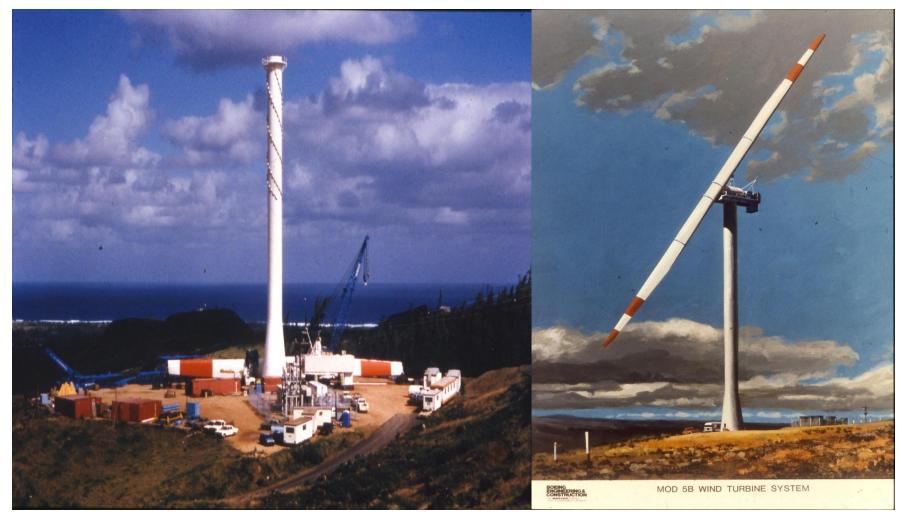
#### **How Wind Energy Works?**


- Most wind energy comes from turbines that can be as tall as a 20-story building and have three 200-foot (60-meter)-long blades.
- The wind spins the blades, which turn a shaft connected to a generator that produces electricity.
- The biggest wind turbines generate enough electricity in a year (about 12 megawatt-hours).
- Wind farms have tens and sometimes hundreds of these turbines lined up together in particularly windy spots.
- Smaller turbines erected in a backyard can produce enough electricity for a single home or small

#### Increased incentives


- Rise in oil prices in early 1970s prompted government research and incentives
- □ Key players:
  - Rocky Flats Small HAWTs < 100 kW</p>
  - NASA Lewis Large HAWTs > 100 kW
  - Sandia Labs VAWTs
- Result: the "Mod" series
  - Mod 0 Plum Brook, Ohio
  - Mod 1 Boone, North Carolina
  - Mod 2 Washington, Calif, & Wyoming

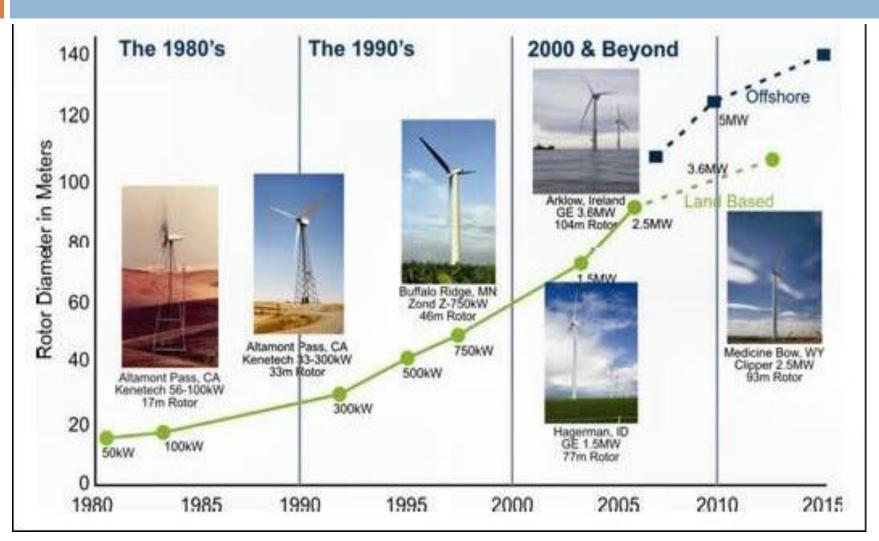
## Mod 0 (200 kW)



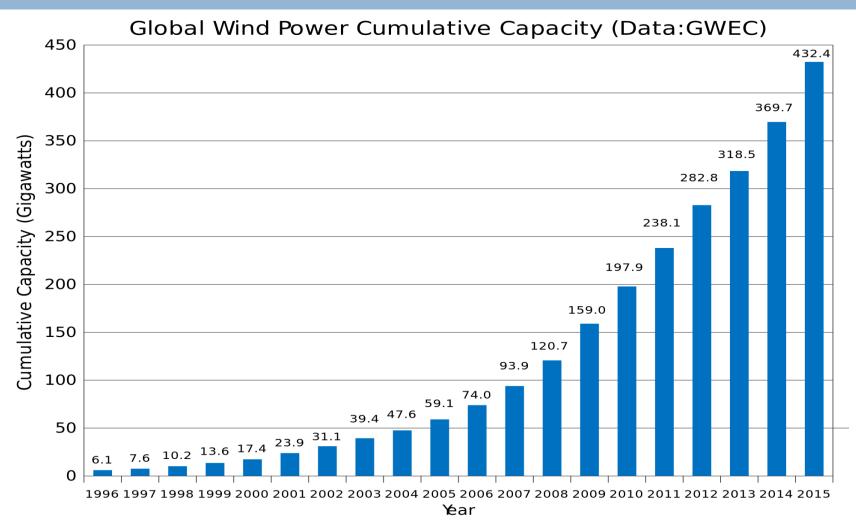



## Mod 1 (2 MW)




## Mod 5b (3.2 MW)




November 17

Dr. Mohamed Ahmed Ebrahim

#### **Evolution of Commercial Wind Technology**



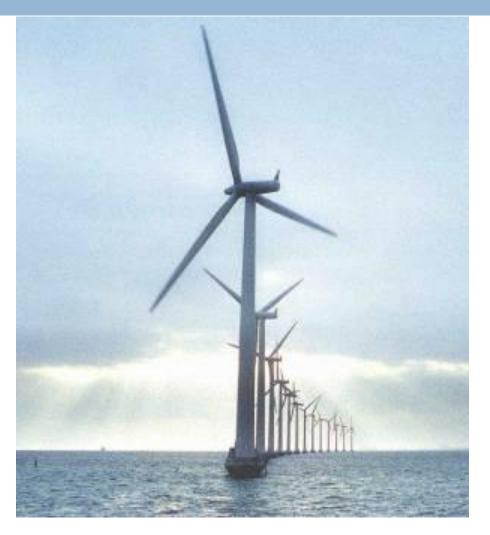
#### World Growth Market



#### **Current Trends**

- Move towards ever larger machines
- Offshore
- More financial players
- More countries
- Low wind speed turbines (U.S.)
- Green energy and green tags




#### **Offshore Wind**

#### ■ Why offshore?

- Close to load centers (avoids transmission)
- On-shore NIMBY
- Better wind resource

#### □ U.S. issues

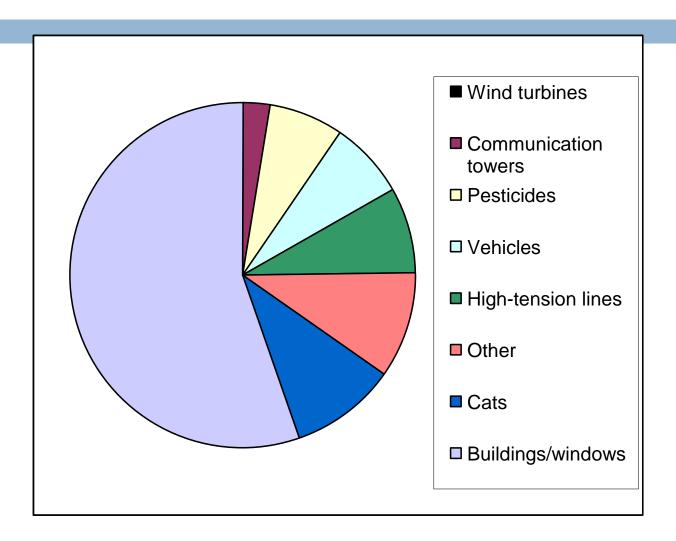
- Less shallow water than Europe
- More extreme wave and hurricane design conditions
- Ice in great lakes



Dr. Mohamed Ahmed Ebrahim

## Fact or Fiction?

## Burning questions


What are your most burning questions about wind energy?

 Break into small groups and come up with two biggest questions per group.

#### Predicted Questions

- What's the real story with bird kills?
  - What about bats?
- What happens to my electricity when the wind doesn't blow?
- How noisy are wind turbines?
- Do wind turbines interfere with electrical power quality or TV and radio transmissions?

#### Human-related bird kills



http://www.awea.org/faq/wwt\_environment.html#Bird%20and%20bat%20kills%20and%20other%20effects

Dr. Mohamed Ahmed Ebrahim

#### **Bat Kills**

- Bat fatality at wind turbines has been documented worldwide in the U.S., Australia, Canada, Germany, Spain, and Sweden.
- Bat fatalities have been reported at nearly all wind energy facilities in the U.S.
  - annual mortality estimated at <2 to nearly 50 bats/turbine/year</p>
- Bat mortality appears to be highest in or near forests and lowest in open grassland or farmland away from forests.
- Bats rarely strike fixed objects.
- Source: Bat Conservation International (http://www.batcon.org/home/index.asp?idPage=55&ra5051 age=52)

#### When the wind doesn't blow...

Do fossil-fired generating units have to be kept running on a standby basis in case the wind dies down?



- No. Wind speeds rise and fall gradually and the system operator has time to move other plants on and off line as needed.
- A 100-MW wind plant requires about 2 MW of conventional capacity to compensate for changes in wind.
- Wind can reliably provide 20% or more of our electricity.

## Lifetime environmental impact

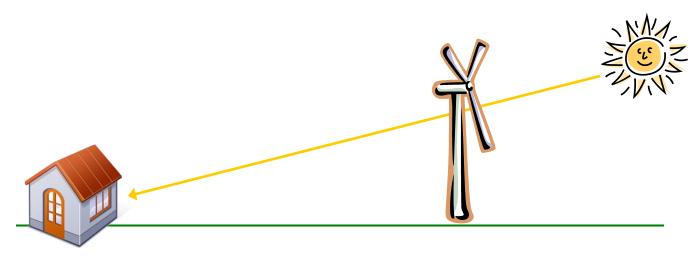
- Manufacturing wind turbines and building wind plants does not create large emissions of carbon dioxide.
- When these operations are included, wind energy's CO<sub>2</sub> emissions are quite small:
  - about 1% of coal, or
  - about 2% of natural gas (per unit of electricity generated).



#### Noise

- Noise used to be a very serious problem for the wind energy industry.
  - annoying from as much as a mile away
- Aerodynamics and soundproofing have been improved significantly.
- Wind turbines operate when the wind is blowing, which tends to be louder than turbine noise.
- A modern operating wind farm at a distance of 750 to 1,000 feet is no noisier than a kitchen refrigerator or a moderately quiet room.




| COMPARISON OF SOUND PRESSURE LEVEL AND SOUND PRESSURE                                                                                                     |                                                         |                                                                                                                       |                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sound Pressure Level, dB                                                                                                                                  |                                                         | Sound Pressure, Pa                                                                                                    |                                                                                                                                                                      |
| Pneumatic Chipper (at 5 ft) Textile Loom Newspaper Press Diesel Truck 40 mph (at 50 ft) Passenger Car 50 mph (at 50 ft) Conversation (at 3 ft) Quiet Room | 120   110   100   90   80   70   60   40   20   10   10 | 20<br>10<br>5<br>2<br>1<br>0.5<br>0.2<br>0.1<br>0.05<br>0.02<br>0.01<br>0.005<br>0.002<br>0.0001<br>0.0005<br>0.00001 | Rock-n-Roll Band  Power Lawn Mower (at operator's ear)  Milling Machine (at 4 ft) Garbage Disposal (at 3 ft)  Vacuum Cleaner Air Conditioning (Window Unit at 25 ft) |

http://www.awea.org/pubs/factsheets/WE\_Noise.pdf

Dr. Mohamed Ahmed Ebrahim

#### Shadow flicker

- A wind turbine's moving blades can cast a moving shadow on a nearby residence, depending on the time of the year and time of day.
- Normally, it should not be a problem in the U.S., because at U.S. latitudes (except in Alaska) the sun's angle is not very low in the sky.



http://www.awea.org/faq/wwt\_environment.html#Bird%20and%20bat%20kills%20and%20other%20effects

## Electrical power quality

- Generally not a concern for low "penetration"
- Weak grids and grid reinforcement
  - Problems may occur if a turbine is connected to a weak electrical grid, which can be reinforced.
  - Power quality problems caused by wind farms are the exact mirror-image of connecting a large electricity user, (e.g. a factory with large electrical motors) to the grid.

#### Electrical flicker

- Flicker = short lived voltage variations in the electrical grid which may cause light bulbs to flicker.
- Flicker may occur if a wind turbine is connected to a weak grid.
- Flicker can be reduced with proper turbine design.

## TV and radio reception

- Modern small (residential) wind turbines will not interfere with communication signals.
  - The materials used to make such machines are nonmetallic (composites, plastic, wood).
  - Small turbines are too small to create electromagnetic interference (EMI) by "chopping up" a signal.
- Large wind turbines can interfere with radio or TV signals if a turbine is in the "line of sight" between a receiver and the signal source. Alleviate the problem by:
  - improving the receiver's antenna
  - installing relays to transmit the signal around the wind farm



## Sizes and Applications

## Sizes and Applications



#### Small (≤10 kW)

- Homes
- Farms
- Remote Applications
   (e.g. water pumping,
   talegomerites

telecom sites, icemaking)



## Intermediate (10-250 kW)

- Village Power
- Hybrid Systems
- Distributed Power



#### Large (660 kW - 2+MW)

- Central Station Wind Farms
- Distributed Power
- Community Wind Dr. Mohamed Ahmed Ebrahim

#### Large and Small Wind Turbines

#### Large Turbines (600-2000 kW)

- Installed in "Windfarm" arrays totaling 1 100 MW
- \$1,300/kW
- Designed for low cost of energy (COE)
- Requires 6 m/s (13 mph) average wind speed
- Value of Energy: \$0.02 \$0.06 per kWh

#### Small Turbines (0.3-100 kW)

- Installed in "rural residential" on-grid and off-grid applications
- \$2,500-\$8,000/kW
- Designed for reliability / low maintenance
- Requires 4 m/s (9 mph) average wind speed
- Value of energy: \$0.06 \$0.26 per kWh





#### **Small Wind Turbines**

- Blades: Fiber-reinforced plastics, fixed pitch, either twisted/tapered, or straight (pultruded)
- Generator: Direct-drive permanent magnet alternator, no brushes, 3-phase AC, variable-speed operation
- Designed for:
  - Simplicity, reliability
  - Few moving parts
  - Little regular maintenance required











Dr. Mohamed Ahmed Ebrahim

### On-Grid Home with Wind System

- Tehachapi, CA
- Bergey Excel wind turbine,23 ft rotor, 10 kW
- Total installed cost was\$34,122 in October 1999
- California Buy-Down Program,\$16,871 cash rebate
- Estimated payback: 8 years



### On-Grid Farm with Wind System

- □Southwestern Kansas
- □Bergey Windpower Excel wind turbine: 10 kW, 23 ft rotor, 100 ft tower
- □~21,000 kWh/year generation, utility bill savings ~\$2,800/year
- □Installed in early 1980s, ~\$20,000, received federal tax credit
- ■Maintenance costs \$50/year

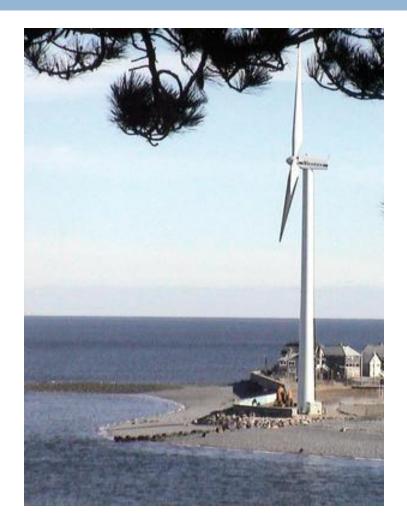


Dr. Mohamed Ahmed Ebrahim

## Orland, Maine

- Turbine Size: 50 kW
- Turbine Manufacturer:
   Atlantic Orient Corp. (AOC)
- Radius: 7.5 m
- Developer/owner: G.M.
   Allen & Sons Blueberry
   Processing Plant




## Selawik, Alaska

- 4 x 50 kW Wind Turbines
- Turbine
   Manufacturer: AOC
- Developer/Owner: Alaska Village Electric Corp.
- Capacity: 200 kW



## Hull, Massachusetts

- □ Turbine Size: 660 kW
- Turbine Manufacturer:Vestas
- Developer/Owner: HullMunicipal Lighting Plant
- □ Capacity: 0.66 MW



Dr. Mohamed Ahmed Ebrahim

### Ponnequin, Colorado



- Turbine Manufacturer:
   Vestas, NEG Micon
- Developer/owner:DisGen/Xcel Energy

Turbine Size: 660-750 kW

Capacity: 31.5 MW

Commissioned: 1999